
UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 1 -

H APP C ONTROLS
Manufacturer of Electronic Controls

Specification and Features
Happ UGCI™

For the latest information on this and our other products visit
 WWW.HAPPCONTROLS.COM

Disclaimer: Although every effort is made to be accurate, Happ Controls cannot assume any
responsibility whatsoever for errors or omissions in this or any other document or software

relating to the UGCI or the UGCI SDK.

© 1999 Happ Controls Incorporated
© 1999 R0R3 Software Incorporated

INS-0037

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 2 -

1.0 The UGCI

Thank you for the purchase of your Happ UGCI. The Happ UGCI is the most
comprehensive industrial–strength game interface on the market today. The
Happ UGCI provides all of the features of a full arcade and amusement interface
with the compliment of robust and fast 15 mega-bit USB bus. Leading the
technology in USB devices, the UGCI packs every coin-op feature, with the
added benefit of security and watch-dog options. The Economical UGCI provides
a Plug-And-Play WINDOWS 98/ME/2000 device in a ready to use game
interface. The UGCI eliminates the need for the archaic and
complicated/expensive “JAMMA” wiring standard by packing the electrical
interface in a straightforward USB bus cabling scheme. Thus the UGCI can be
mounted directly adjacent to the control panel and the JAMMA discarded entirely.
For kit applications this solves the direct problem of rewiring the entire cabinet
when a game is changed into old wood.

UGCI Feature List

Happ USB
Game Interface
Board (UGCI)

Joystick(s) Trackball(s) Coin Counter(s) Buttons Per
Joystick

Outputs
(Med and Hi
current outputs
require optional
Driver Board)

Driving Steering Wheel,
Throttle, Brake
and Clutch

One two axis
trackball/mouse
interface with 3-
Buttons

Two Coin/Bill
Counter plus two
Start Buttons

Six, and 4-speed
shifter plus
reverse

14 Med. and two
High Current
Lamp or Solenoid
Drivers with
status LED and
WatchDog CPU
reset

Flying Two 2-Axis
Analog with
Rudder Pedals
and Throttle plus
eight position
POV Hat switch

One two axis
trackball/mouse
interface with 3-
Buttons

Two Coin/Bill
Counter plus two
Start Buttons

Eleven not
including POV
hat.

14 Med. and two
High Current
Lamp or Solenoid
Drivers with
status LED and
WatchDog CPU
reset

Fighting Two 8/4-position
digital joysticks

One two axis
trackball/mouse
interface with 3-
Buttons

Two Coin/Bill
Counters Plus
two Start Buttons

Six Buttons
Joystick 1
Seven Buttons
Joystick 2

14 Med. and two
High Current
Lamp or Solenoid
Drivers with
status LED and
WatchDog CPU
reset

The UGCI consists of a base PC board platform and three interchangeable
firmware chips. Each chip has a different personality programmed into it which
suits a particular game market segment: The purchase of a UGCI contains a
single chip which can be ordered with the following part number:

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 3 -

UGCI UGCI Chip Number USB VID-PID Number
Driving 96-0744-10 078B-0010
Flying 96-0744-20 078B-0020
Fighting(stick) 96-0744-30 078B-0030

Each of the three chips contains a product unique USB VID-PID to identify a
particular feature(s) in the system. The UGCI is completely USB HID compliant
and therefore eliminates the need for a secondary keyboard and trackball to boot
the PC based location arcade game. Among the features of the UGCI are:

• A single USB port interface for all devices thus eliminating the JAMMA
interface.

• Control panel wiring Harness (included).
• Two coin drop inputs per board with a non-volatile game accessible coin

counter - standard. Each input also accepts standard Coin/Bill Counters
• Two Player/Start inputs per board standard
• One high performance optical trackball 2-axis, three button interface per

UGCI.
• Read/Writeable 14 byte Security and non-volatile system storage to protect

the game program from intellectual theft.
• Up to 504 bytes of user programmable EEPROM (Note: boards older than

rev C will have only 120 bytes. Must have firmware version 2.00 and higher.)
• Programmable button interface that programs a button to a keyboard SCAN

code key.
• Eliminates the need for a keyboard and mouse attached to the PC for boot

purposes thus eliminating the additional expense.
• 2 high current and 14 medium current outputs with the addition of a daughter

board.
• Fast, high–performance joystick interface.
• 120 Hz Packet rate at 1.5 Mbits/Second
• High Performance Universal Serial Bus (USB) IO Channel.
• Low cost
• Robust fault tolerant design that is USB HID compliant.
• DirectX © Ready.
• Built in WINDOWS 98™ and WINDOWS 2000/XP™ Operating System

support
• Eight high speed 8-bit 1 Khz analog channels.
• 32 Digital inputs at 10 Khz Each.
• CPU resource efficient 10 times faster than RS-232 base arcade models
• 120 Hz polling frequency for each data packet input.
• Plug-And-Play and ACPI Compliant
• Host CPU Reset watch-dog timer

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 4 -

Base System UGCI and ARCADE PC (Flying UGCI)

VGA/
CGA

Arcade
PC

USB Cable 15’

AT Keyboard

3-Button Trackball

14-Byte Security Storage

Non-Volatile Coin-Counter (2)

14 Med./16 High Current
Outputs, using optional Driver
Board

4 Axis, 11 Button Analog

Joystick w/POV Hat Switch

Watchdog Timer that resets an
errant “hung” computer

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 5 -

1.1 HID Compliance

The UGCI is a full-blown HID compliant system. HID compliance does not require
a device driver to be supplied with every UGCI and is supported by the operating
system. Each component in the UGCI complies with HID version 1.0.

2.1 Features of Driving UGCI

VID-PID: 078B-010
Functions: Driving, Coin-Drop, Watchdog, Trackball, Serial Number,

Daughter Board

For the driving UGCI either an analog pot or switch can be applied to the analog
input for brake, throttle and clutch. The analog inputs are pulled high with a 470K
resistor so the maximum input DC impedance is 5K ohms. The value is reported
as an analog input in the HID report descriptor.

2.2 Features of Flying UGCI

VID-PID: 078B-020
Functions: Flying, Coin-Drop(s), Watchdog, Trackball, Serial Number,

Daughter Board

For the Flying UGCI either an analog pot or switch can be applied to the analog
input for brake, throttle and clutch. The analog inputs are pulled high with a 470K
resistor so the maximum DC input impedance is 5K ohms. For games that utilize
a throttle and rudder where no physical device is present, the rudder/throttle
inputs should be tied to ground to prevent spurious noise.

2.3 Features of Fighting UGCI, a Two Joystick system

VID-PID: 078B-030
Functions: JS2, JS1, Coin-Drop(s), Trackball, Watchdog, Serial Number,

Daughter Board

For the Fighting UGCI a switch can be applied to the analog input for joystick
buttons. The analog inputs are pulled high with a 470K resistor so the maximum
DC input impedance is 5K ohms. The JS1 and JS2 are digital 8 position
joysticks with the input to the UGCI tied to with the NO contact. A complete wiring
harness is supplied with the UGCI.

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 6 -

3.0 IO List Pin Orientation

IC Flying Fighting Driving Connects
U1-P0-0 TB Button 1 (L) TB Button 1 (L) TB Button 1 (L) J2-4
U1-P0-1 Coin 1 Coin 1 Coin 1 J3-1
U1-P0-2 Player 1 Player 1 Player 1 J3-2
U1-P0-3 X X X J1-2
U1-P0-4 X’ X’ X’ J1-3
U1-P0-5 Y Y Y J1-7
U1-P0-6 Y’ Y’ Y’ J1-8
U1-P0-7 TB Button 3 (R) TB Button 3 (R) TB Button 3 (R) J2-2
U1-P1-0 TB Button 2 (M) TB Button 2 (M) TB Button 2 (M) J2-3
U1-P1-1 POVN JS1N Button-8 J4-1
U1-P1-2 POVE JS1W Button-9 J4-2
U1-P1-3 POVS JS1S Button-10 J4-3
U1-P1-4 POVW JS1E Button-11 J4-4
U1-P1-5 JSB-1 JS1B-1 Button-1 J4-6
U1-P1-6 JSB-2 JS1B-2 Button-2 J4-7
U1-P1-7 JSB-3 JS1B-3 Button-3 J4-8
U1-P2-0 CS-U3 CS-U3 CS-U3 CS-U3
U1-P2-1 JSB-5 JS2B-1 Button-5 J5-1
U1-P2-2 JSB-6 JS2B-2 Button-6 J5-2
U1-P2-3 JSB-7 JS2B-3 Button-7 J5-3
U1-P2-4 JSB-8 JS2N Button12 J5-4
U1-P2-5 JSB-9 JS2W Button-13 J5-5
U1-P2-6 JSB-10 JS2S Button-14 J5-7
U1-P2-7 JSB-11 JS2E Button-15 J5-9
U1-P3-0 CS-1 Driver PCB/LED CS-1 Driver PCB/LED CS-1 Driver PCB/LED J7-4/LED D1
U1-P3-1 CS-2 Daughter CS-2 Daughter CS-2 Daughter J7-5
U1-P3-2 CS-3 A/D CS-3 A/D CS-3 A/D U2-16
U1-P3-3 Data In Data In Data In
U1-P3-4 Data Out Data Out Data Out J7-7
U1-P3-5 Clock Clock Clock J7-2
U1-P3-6 WD WD WD J8-1
U1-P3-7 Coin 2 Coin 2 Coin 2 J3-5
U2-A/D-0 X-Axis JS2B-7 X-Axis (Wheel) J6-3
U2-A/D-1 Y-Axis JS2B-6 Y-Axis (Throttle) J6-4
U2-A/D-2 Rudder JS2B-5 Throttle J6-5
U2-A/D-3 Throttle JS2B-4 Rudder J6-6
U2-A/D-4 Player 2 Player 2 Player 2 J3-6
U2-A/D-5 N/C JS1B-6 Brake J6-9
U2-A/D-6 N/C JS1B-5 N/C J6-10
U2-A/D-7 JSB-4 JS1B-4 Button 4 J4-9

NOTE: In the Driving UGCI, the analog controls in your game may be defined
differently than above. The above usages are per the HID spec.

Connector Tables

Connector J1
Trackball

Connects

PIN1 +5V
PIN2 X
PIN3 X’
PIN4 GND
PIN5 GND
PIN6 GND
PIN7 Y
PIN8 Y’
PIN9 NC
PIN10 +5

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 7 -

Connector J2
Trackball
Buttons

Connects

PIN1 GND
PIN2 TB Button 3 (R)
PIN3 TB Button 2 (M)
PIN4 TB Button 1 (L)
PIN5 NC
PIN6 GND

Connector J3
Start

Connects

PIN1 Coin 1
PIN2 Player 1
PIN3 NC
PIN4 GND
PIN5 Coin 2
PIN6 Player 2
PIN7 GND
PIN8 GND

Connector J4 Flying Fighting Driving

PIN1 POVN JS1N 1
PIN2 POVE JS1W 2
PIN3 POVS JS1S 3
PIN4 POVW JS1E 4
PIN5 GND GND GND
PIN6 JSB-1 JS1B-1 B1
PIN7 JSB-2 JS1B-2 B2
PIN8 JSB-3 JS1B-3 B3
PIN9 JSB-4 JS1B-4 B4
PIN10 NC NC NC
PIN11 GND GND GND
PIN12 GND GND GND

Con. J5 Flying Fighting Driving
PIN1 JSB-5 JS2B-1 B-5
PIN2 JSB-6 JS2B-2 B-6
PIN3 JSB-7 JS2B-3 B-7
PIN4 JSB-8 JS2N Reverse
PIN5 JSB-9 JS2W Switch-Type Clutch
PIN6 GND GND GND
PIN7 JSB-10 JS2S 5th

PIN8 NC NC NC
PIN9 JSB-11 JS2E
PIN10 GND GND GND

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 8 -

Con. J6 Flying Fighting Driving
PIN1 +5 +5 +5
PIN2 NC NC NC
PIN3 X JS2-B7 X-Axis (Wheel)
PIN4 Y JS2-B6 Y-Axis (Throttle)
PIN5 Rudder JS2-B5 Throttle
PIN6 Throttle JS2-B4 Rudder

PIN7 GND GND GND
PIN8 GND GND GND
PIN9 JS1-B6 Brake
PIN10 JS1-B5
PIN11 Player 2
PIN12 +5 +5 +5

NOTE: In the Driving UGCI, the analog controls in your game may be defined
differently than above. The above usages are per the HID spec.

Connector J7 Connects
PIN1 +5
PIN2 Clock
PIN3 GND
PIN4 CS-1
PIN5 CS-2
PIN6 NC
PIN7 Data Out
PIN8 GND

Connector J8 Watchdog Reset Connects
PIN1 WD
PIN2 GND

3.1 Key/Button Electrical Connections

The button is read utilizing the NO and NC features of the standard Happ input
buttons thus eliminating the need for IO scanning e.g.:

B1

B2

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 9 -

3.1 Features of the Happ USB Game Control Interface

Three distinct models:

• Driving UGCI 3-Button Trackball. Steering wheel, brake, rudder, throttle. Two
Coin/Bill-drop and two start buttons. Up to fifteen general purpose buttons.
General purpose EEPROM. Mapping of buttons to keyboard scan codes.
Host watch-dog timer. 2 high current and 14 medium current Lamp Drivers
with daughter board.

• Flying UGCI 3-Button Trackball. Analog B-8 Joystick, with POV hat. Rudder
pedal, Throttle and two coin-drops. Two Coin/Bill-drop and two start buttons.
Up to fifteen general purpose buttons. General purpose EEPROM. Mapping
of buttons to keyboard scan codes.

• Fighting UGCI: 3-Button Trackball. Two eight position digital joysticks. Up to
six buttons for each joystick. Two Coin/Bill-drop and two start buttons. Up to
fifteen general purpose buttons. General purpose EEPROM. Mapping of
buttons to keyboard scan codes.

4.0 Packet Format and Protocol for the UGCI

The packets are delivered to the host system when change is detected in the
composite device interface. A composite device is identified by a leading Report
ID byte followed by one or more trailing bytes. Some of the devices on the UGCI
do not have a leading report ID byte. Use the following table(s) to determine the
report format. The trailing bytes have the format as outlined in the following
tables.

4.1 Report Format and Operation, Watchdog Composite (All models)

The watchdog timer resets an out of control game application or system. The
watchdog reset will be asserted under the following conditions:

• Watchdog timeout, the game/host fails to send the watchdog refresh packet
or the internal timer elapses during boot.

4.1.1 Watchdog Behavior (Runtime)

The watchdog timeout value is stored in non-volatile memory. The boot behavior
differs slightly from the runtime operation. Runtime operation is indicated by a
reception of the first watchdog refresh packet. The packet contains a 16-bit timer
value (0-65535 seconds) which must be refreshed by the host prior to elapse of
the timer. The timer value begins decrementing immediately after reception of a
watchdog packet. The Watchdog packet has the following format:

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 10 -

Watchdog Packet Format (all versions) Write on Endpoint 0

Byte 0 Byte 1 Byte 2 Byte 3
Report ID = 6 Low Order Byte High Byte Action

The watchdog packet is sent on the control point by doing a bulk write to
endpoint 0. See the UGCI SDK for information on how to do this. The byte format
is little-endian. Writing a value of zero to the timeout turns the watchdog feature
off. Any other value refreshes the watchdog timer and begins decrementing an
internal one-second timer. When the timer value reaches zero, PIN 1 of J8 is
asserted for 1000 ms thus re-booting the host. The watchdog reset output pin is
an open–drain output. The watchdog reset cable must be a twisted pair with the
shield connected at the host ground to prevent noise. The watchdog cable should
be connected to the Reset pin on the PC motherboard.

The action byte (3) determines which behavior to process, either boot =2 or
runtime =1. If runtime is selected, the device will expect a refresh packet prior to
the timeout period, and the watchdog is initially off until the very first watchdog
packet in the session is received with a non-zero watchdog packet value. If boot
(2) is selected, the watchdog value is written to non-volatile memory. This value
is used during boot, prior to instantiating the WINDOWS or the host operating
system. The watchdog will start running after the device is reset. The watchdog
will then begin decrementing the boot timeout and will reset the host if the
timeout occurs prior to the host sending the first watchdog packet. This is to
prevent errant behavior during boot. If boot (2) is selected, the minimum time for
the watchdog will be 20 seconds. If a shorter time is sent to the UGCI, then that
time will be used for the first timeout, however, after the device resets the host
the timeout will be set to 20 seconds.

The UGCI is shipped from Happ with the watchdog off.

 4.2 Report Format and Operation, Coin-Op(s)

Each UGCI model contains two internal software based non-volatile 16-bit coin
counters and two player start buttons. The internal coin-counters are
incremented once each time an active low pulse of duration 50ms is asserted at
the inputs. The inputs to the coin counters are TTL/CMOS, Open Drain CMOS or
a NO switch compatible. The coin counters (J3-1 and J3-5) are compatible with
and have been tested with MARS bill acceptors, various coin-op mechanisms
and card readers. The coin-counters are completely de-bounced to prevent
spurious noise from inadvertently tripping the counters. The coin counters
eliminate the need for a mechanical counter in the cabinet because each coin

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 11 -

event stores the current coin-count in the UGCI non-volatile memory, which is
then available to the game application

NOTE: Voltage levels higher than 5-volts on J3-1 and J3-5 will damage the
UGCI.

4.2.1 Reading the Coin Count

Coin-op packets are sent to the host every time a coin or bill is inserted in the
host or, when the player start button is pressed or released. All three models of
the UGCI share the same coin-op packet format:

Coin-OP Packet Format, USB Endpoint 1, (all models)

Byte 0 Byte 1 Byte 2 Byte 3
RID = 3
J3-1 – Coin 1
J3-2 – Start 1

Coin Count LSB Coin Count MSB Player Buttons
1=Pressed,
0=Released

RID = 4
J3-5 – Coin 2
J3-6 – Start 2

Coin Count LSB Coin Count MSB Player Buttons
1=Pressed,
0=Released

If the bill-acceptor or card reader is configured to assert three pulses into the J3-
1 for instance, the coin-count LSB and MSB will be incremented three times as a
16-bit integer. The coin count value is then written into non-volatile memory. The
coin count values cannot be reset and will rollover at 64K. The coin count value
is sent to the host once after the host Operating System enumerates. See the
SDK for information on how to read the coin count. The coin count value will be
maintained in non-volatile memory after boot. The non-volatile memory has a life
expectancy of over 100 years and millions of cycles.

The coin inputs are written during host boot if they are activated during that time.
This will facilitate the loss of play information should the player insert coins during
that time.

4.3 Security and ID (all models)

A 14-byte non-volatile security buffer is provided on all models of the UGCI for
storage of private data. The security buffer can be used to store game
information such as security and protection should the illegal theft of the game
occur. The game could then use this information to validate the platform. The
security information is transmitted as two separate 8-byte packets, and read as
the same. The security information is written as two separate packets on
endpoint 0 as a bulk write, and read as two separate values on a host read
(endpoint 1):

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 12 -

Security Buffer (write on Endpoint 0)

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
RID=9 Char 0 Char 1 Char 2 Char 3 Char 4 Char 5 Char 6
RID=10 Char 7 Char 8 Char 9 Char 10 Char 11 Char 12 Char 13

4.4 Security Buffer Read

The security buffer is read on endpoint 0.

Security Buffer (read on endpoint 1)

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
RID=11 Char 0 Char 1 Char 2 Char 3 Char 4 Char 5 Char 6
RID=12 Char 7 Char 8 Char 9 Char 10 Char 11 Char 12 Char 13

4.5 Trackball Interface (all models)

Each model contains a complete high-performance 3-button game ready
trackball interface. The axis information is transmitted as two separate signed 8-
bit values. The trackball interface has it’s own endpoint (endpoint 2) which it does
not share with any other composite device. To facilitate high performance, the
trackball transmits at 120 Hz.

Trackball Packet

Byte 0 Byte 1 Byte 2
X-Axis, Range = -127 to
127

Y-Axis, Range = -127 to
127

Bit 0 = Button1 (Left)
Bit 1 = Button 2(Right)
Bit 2 = Button 3 (Middle)
Bit 4 – 7 (not used)

4.5.1 Boot Behavior

To save cost to the game developer, the UGCI trackball contains a boot
descriptor that emulates a serial or PS-2 mouse, if the PC BIOS supports this
feature. Most PC BIOS’s support the USB boot protocol for trackballs and mice.
The trackball should function under DOS using the BIOS mouse interrupt
interface (see your DOS information).

4.5.2 Trackball Runtime Behavior

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 13 -

For a PC arcade platform, no additional mouse is required in the cabinet to boot
WINDOWS. The UGCI begins sending out trackball reports as the ball is moved
and the buttons are pressed. A trackball report is sent on every trackball event,
this includes buttons pressed and released. The electrical interface will support
all Happ trackballs.

4.6 Keyboard Emulator (All Models) and Key Mapping

To eliminate the need for an additional keyboard in the cabinet, the UGCI
provides keyboard emulation. The emulator consists of a USB keyboard boot
descriptor that fools the BIOS into thinking that a physical keyboard is attached to
the computer. The keyboard emulator is shared on endpoint 1. Because of this a
large programmable delay must be inserted before the first report is sent to
prevent report transmissions with the report id attached at boot-up. This prevents
some BIOSs from locking up the system thinking that a key has been pressed.
The boot delay is configurable using the following report:

Keyboard Emulator Boot Mode/Delay

Byte 0 Byte 1 Byte 2
RID=16 Mode:

0 = No Boot Keyboard
(turns off boot descriptor)
1 = HID Compliant
2 = Use Boot descriptor with delay

Boot Delay: 0-255 in seconds

There are 3 modes for the keyboard device that can be configured by sending a
report to the UGCI:

1) Non Bootable
 In this mode there is no boot descriptor for the keyboard.

2) HID compliant bootable keyboard
There are two protocols for reporting keyboard data to the host: boot protocol
and report protocol. Since the keyboard shares the endpoint with other devices a
report ID is needed for each device. In report mode the keyboard will send a
report ID along with the data. The UGCI defaults to report mode on power up (
this is as per the HID spec). When the PC boots up the BIOS is supposed to
send a message to the UGCI to put the device into boot protocol. In boot protocol
the format for the keyboard report is as per the HID spec (which does not include
a report ID). After the OS loads, the host is then supposed to put the device into
report protocol.

3) Boot Protocol on Power Up or Bus Reset with a Configurable Delay.

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 14 -

In this mode the UGCI will default to boot protocol on power up or bus reset, and
stay in boot protocol for a configurable time period. At the end of this time period
the device will switch to report protocol. This does not conform to the HID spec,
however it does allow PCs that don’t have full BIOS support for a bootable USB
Keyboard to be used with the UGCI. The user should be aware that if the device
sees a bus reset, no joystick data will be available to the application until after the
programmable time period.

4.6.1 Key Mapping

The system keyboard emulation allows the mapping of keyboard keystrokes to
the joystick and trackball buttons. The buttons are coded in HID usage keycodes
and the usages are available in the HID 1.0 Usage specification available on the
WWW.USB.ORG\DEVELOPERS web page. The SDK outlines the usages for
key scan codes and demonstrates the use of keycodes. The report descriptor
has the following format:

Keyboard Emulation, Key Press/Release Report Format

Byte 0 Byte 1 Byte 2 Byte 3
RID= 14 Modifier Byte

This byte contain
CTRL, SHIFT, ALT
modifiers (in usage
code)

(not used) Key (usage code)
that was pressed:
“a”= 04h
“b”= 05h etc..

Each time a key is pressed a report is sent with the appropriate modifiers set and
key codes set. Individual Joystick and Trackball Buttons can also be mapped to
key scan-codes. These codes are programmed into non-volatile memory and the
keyboard report will be sent when the corresponding button is pressed. Starting
with firmware version 2.00 and greater, the keyboard repeat rate and repeat
delay time can also be set. The values for repeat rate and repeat delay are set in
4 msec increments with a range of 0 –255 (0 – 1.020 seconds). Key to Button
mapping is handled in the following reports:

Report Format for Button Mapping (Prior to firmware ver 2.00)

Keyboard Mapping 1-7 (Output, 8 Bytes) Flying UGCI

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
RID=17 Button 1

Mapping
Scan
Code

Button 2
Mapping
Scan
Code

Button 3
Mapping
Scan
Code

Button 4
Mapping
Scan
Code

Button 5
Mapping
Scan
Code

Button 6
Mapping
Scan
Code

Button 7
Mapping
Scan
Code

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 15 -

Keyboard Mapping 2-8 (Output, 8 Bytes) Flying UGCI

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
RID=18 Button 8

Mapping
Scan
Code

Button 9
Mapping
Scan
Code

Button 10
Mapping
Scan
Code

Button 11
Mapping
Scan
Code

(not
used)

(not
used)

(not
used)

Keyboard Mapping 1-7 (Output, 8 Bytes) Fighting UGCI

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
RID=17 JS1

Button 1
Mapping
Scan
Code

JS1
Button 2
Mapping
Scan
Code

JS1
Button 3
Mapping
Scan
Code

JS1
Button 4
Mapping
Scan
Code

JS1
Button 5
Mapping
Scan
Code

JS1
Button 6
Mapping
Scan
Code

(not
used)

Keyboard Mapping 2-8 (Output, 8 Bytes) Fighting UGCI

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
RID=18 JS2

Button 1
Mapping
Scan
Code

JS2
Button 2
Mapping
Scan
Code

JS2
Button 3
Mapping
Scan
Code

JS2
Button 4
Mapping
Scan
Code

JS2
Button 5
Mapping
Scan
Code

JS2
Button 6
Mapping
Scan
Code

JS2
Button 7
Mapping
Scan
Code

Keyboard Mapping 1-7 (Output, 8 Bytes) Driving UGCI

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
RID=17 Button 1

Mapping
Scan
Code

Button 2
Mapping
Scan
Code

Button 3
Mapping
Scan
Code

Button 4
Mapping
Scan
Code

Button 5
Mapping
Scan
Code

Button 6
Mapping
Scan
Code

Button 7
Mapping
Scan
Code

Keyboard Mapping 2-8 (Output, 8 Bytes) Driving UGCI

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
RID=18 Button 8

Mapping
Scan
Code

1st
Mapping
Scan
Code

2nd
Button 3
Mapping
Scan
Code

3rd

Button 4
Mapping
Scan
Code

4th
Button 5
Mapping
Scan
Code

5th
Mapping
Scan
Code

Reverse
Mapping
Scan
Code

Keyboard Mapping 9-15 (Output, 8 Bytes) Driving UGCI

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
RID=19 Clutch (not

used)
TB Butt 0
(left)

TB Butt 1
(middle)

TB Butt 2
(right)

(not
used)

(not
used)

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 16 -

Keyboard Mapping 9-15 (Output, 8 Bytes) Flying, Fighting UGCI

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
RID=19 (not

used)
(not
used)

TB Butt 0
(left)

TB Butt 1
(middle)

TB Butt 2
(right)

(not
used)

(not
used)

Report Format for Button Mapping (firmware ver 2.00 and greater)

Starting with firmware ver 2.00 the Key to Button Mapping occupies the first 51
bytes of the general purpose EEPROM space. If key mapping is enabled, then
the first 51 bytes of EEPROM are unavailable to the general purpose EEPROM
write function. Byte 0 of the general purpose EEPROM contains a flag byte that
allows the key mapping to be enabled and disabled. The report format for the key
mapping takes a start address in EEPROM to begin writing, a number of bytes to
write, and a variable number of data bytes. The format is as follows:

Keyboard Mapping (All models)

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 … Byte N
RID=4Bh
(‘K’)

Start
address
in
EEPROM

Number
of bytes
to write
(51 Max)

Data Byte 1 Data Byte 2 … Data Byte
N

The EEPROM addresses for key mapping are defined as follows:

Byte 0: Flag Byte
Bit 0: 0 = Key Mapping Disabled

1 = Key Mapping Enabled
Bit 1-7:reserved (set to 0)

Byte 1-48: These bytes will be change depending on the UGCI.

 For the Flying UGCI they are as follows:

 Byte Function
1 Mouse Left Button key usage
2 Mouse Right Button key usage
3 Mouse Middle Button key usage
4 Joystick Button 1 key usage
5 Joystick Button 2 key usage
6 Joystick Button 3 key usage
7 Joystick Button 4 key usage
8 Joystick Button 5 key usage
9 Joystick Button 6 key usage

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 17 -

 Byte Function
 10 Joystick Button 7 key usage

11 Joystick Button 8 key usage
12 Joystick Button 9 key usage
13 Joystick Button 10 key usage
14 Joystick Button 11 key usage
15 POV Hat N key usage
16 POV Hat E key usage
17 POV Hat S key usage

 18 POV Hat W key usage
19 not used
20 not used
21 not used
22 not used
23 not used
24 not used
25 Mouse Left Button key modifier
26 Mouse Right Button key modifier
27 Mouse Middle Button key modifier
28 Joystick Button 1 key modifier
29 Joystick Button 2 key modifier
30 Joystick Button 3 key modifier
31 Joystick Button 4 key modifier
32 Joystick Button 5 key modifier
33 Joystick Button 6 key modifier
34 Joystick Button 7 key modifier
35 Joystick Button 8 key modifier
36 Joystick Button 9 key modifier
37 Joystick Button 10 key modifier
38 Joystick Button 11 key modifier
39 POV Hat N key modifier
40 POV Hat E key modifier
41 POV Hat S key modifier
42 POV Hat W key modifier
43 not used
44 not used
45 not used
46 not used
47 not used
48 not used

For the Driving UGCI they are as follows:

 Byte Function
1 Mouse Left Button key usage
2 Mouse Right Button key usage
3 Mouse Middle Button key usage
4 Joystick Button 1 key usage
5 Joystick Button 2 key usage
7 Joystick Button 4 key usage

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 18 -

 Byte Function
8 Joystick Button 5 key usage
9 Joystick Button 6 key usage
10 Joystick Button 7 key usage
11 Joystick Button 8 key usage
12 Joystick Button 9 key usage
13 Joystick Button 10 key usage
14 Joystick Button 11 key usage
15 Joystick Button 12 key usage

 16 Joystick Button 13 key usage
17 Joystick Button 14 key usage
18 Joystick Button 15 key usage
19 not used
20 not used
21 not used
22 not used
23 not used
24 not used
25 Mouse Left Button key modifier
26 Mouse Right Button key modifier
27 Mouse Middle Button key modifier
28 Joystick Button 1 key modifier
29 Joystick Button 2 key modifier
30 Joystick Button 3 key modifier
31 Joystick Button 4 key modifier
32 Joystick Button 5 key modifier
33 Joystick Button 6 key modifier
34 Joystick Button 7 key modifier
35 Joystick Button 8 key modifier
36 Joystick Button 9 key modifier
37 Joystick Button 10 key modifier
38 Joystick Button 11 key modifier
39 Joystick Button 12 key modifier
40 Joystick Button 13 key modifier
41 Joystick Button 14 key modifier
42 Joystick Button 15 key modifier
43 not used
44 not used
45 not used
46 not used
47 not used
48 not used

For the Fighting UGCI they are as follows:

Byte Function

1 Mouse Left Button key usage
2 Mouse Right Button key usage
3 Mouse Middle Button key usage
4 Joystick 1 N key usage

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 19 -

 Byte Function
 5 Joystick 1 E key usage

6 Joystick 1 S key usage
7 Joystick 1 W key usage
8 Joystick 2 N key usage
9 Joystick 2 E key usage
10 Joystick 2 S key usage
11 Joystick 2 W key usage

 12 Joystick 1 Button 1 key usage
13 Joystick 1 Button 2 key usage
14 Joystick 1 Button 3 key usage
15 Joystick 1 Button 4 key usage
16 Joystick 1 Button 5 key usage
17 Joystick 1 Button 6 key usage
18 Joystick 2 Button 1 key usage
19 Joystick 2 Button 2 key usage
20 Joystick 2 Button 3 key usage
21 Joystick 2 Button 4 key usage
22 Joystick 2 Button 5 key usage
23 Joystick 2 Button 6 key usage
24 Joystick 2 Button 7 key usage
25 Mouse Left Button key modifier
26 Mouse Right Button key modifier
27 Mouse Middle Button key modifier
28 Joystick 1 N key modifier
29 Joystick 1 E key modifier
30 Joystick 1 S key modifier
31 Joystick 1 W key modifier
32 Joystick 2 N key modifier
33 Joystick 2 E key modifier
34 Joystick 2 S key modifier
35 Joystick 2 W key modifier
36 Joystick 1 Button 1 key modifier
37 Joystick 1 Button 2 key modifier
38 Joystick 1 Button 3 key modifier
39 Joystick 1 Button 4 key modifier
40 Joystick 1 Button 5 key modifier
41 Joystick 1 Button 6 key modifier
42 Joystick 2 Button 1 key modifier
43 Joystick 2 Button 2 key modifier
44 Joystick 2 Button 3 key modifier
45 Joystick 2 Button 4 key modifier
46 Joystick 2 Button 5 key modifier
47 Joystick 2 Button 6 key modifier
48 Joystick 2 Button 7 key modifier

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 20 -

The key modifier bytes have the following format:

 Bit 0: Left Control
Bit 1: Left Shift
Bit 2: Left Alt
Bit 3: Left GUI
Bit 4: Right Control
Bit 5: Right Shift
Bit 6: Right Alt
Bit 7: Right GUI

 Byte 49: Keyboard repeat rate (in 4 ms intervals)
 Byte 50: Keyboard repeat delay (in 4 ms intervals)

UGCI SDK
The SDK outlines the WINDOWS HID methods for mapping buttons. Consult the
SDK for more information. The SDK provides a way for the user to access the special
functions of the UGCI. The SDK is available to developers on the Happ web site
WWW.HAPPCONTROLS.COM on the UGCI page in the Game Developers
section.
This posting of the SDK contains no source code.
A version of the SDK containing source code can be provided to Game Developers or
other UGCI users demonstrating a legitimate need for the source code. The source code
provided can help show how the UGCI communicates with the PC and is intended for
those writing WIN98/2000 applications using the UGCI. You will need to be a member
of MSDN for the code to be of any use to you. Email technical@happcontrols.com if
you wish to obtain the source code. Visit our web site for the latest documentation for the
UGCI.
See section 8 for more detail.

4.7 General Purpose EEPROM (All Models, firmware ver 2.00 and greater)

Starting with firmware version 2.00, a general purpose EEPROM read/write
function has been added to the UGCI. This allows the user to store and retrieve
up to 504 bytes of system or security information in the UGCI. UGCI boards
starting with rev C will contain 504 bytes of general purpose EEPROM. Older
boards will contain only 120 bytes. The UGCI will automatically detect the size of
the EEPROM. This can be read in the flag byte (byte 0 of the EEPROM). Byte 0
of the general purpose EEPROM contains some special flags. This byte is read
only and cannot be written by this method. The general purpose EEPROM
shares space with the key mapping and the serial number. If you have key
mapping enabled, you cannot write to byte 1 – 50 of the EEPROM. If you disbale
key mapping, these bytes are available to you. Bytes 51 – 503 are always
available, however the last 14 bytes are shared by the serial number. If you write
to these bytes, the serial number will be written over. The EEPROM read and
write reports are similar to the key mapping report. The reports are the same
regardless of the size of the EEPROM, and the formats are as follows:

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 21 -

EEPROM Write (All models)

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 … Byte N
RID=58h
(‘W’)

Start
address
in
EEPROM
(LSB)

Start
address in
EEPROM
(MSB)

Number of
bytes to
write (LSB)

Number of
bytes to
write (MSB)

Data Byte1 … Data Byte N

EEPROM Read (All models)

Byte 0
RID=52h (‘R’)

The EEPROM read report is obtained by using the “GetFeature” API. Consult the
SDK for more information on this. This report always returns 504 bytes. Bytes
that don’t exist (if you have only 120 bytes of EEPROM) will be returned as 0.

The EEPROM addresses are as follows:
Byte 0: Flag Byte (read only)

Bit 0: 0 = Key Mapping disabled
1 = Key Mapping Enabled

Bit 1: 0 = 128 byte EEPROM
1 = 512 byte EEPROM

Bit 2: 0 = Thru hole board
1 = Surface mount board (rev C)

 Set this value using the "Set Hardware Rev Level" report
Bit 3-7: Undefined

Byte 1-50: Reserved if key mapping is enabled, Available if not
Byte 51-105: General purpose EEPROM for boards previous to rev C
Byte 51-489: General purpose EEPROM for rev C boards
Byte 106-119:Serial Number for boards previous to rev C
Byte 490-503:Serial Number for rev C boards

4.9 Set Hardware Rev Level (All models firmware rev 2.00 and greater)

The following report allows the user to tell the UGCI the hardware rev level.
WARNING: this feature is intended to be set at the factory and then never
modified. If this feature is set incorrectly, your UGCI may not function properly.
The report is as follows:

Set Hardware Rev Level (All models)

Byte 0 Byte 1 Byte 2
RID=20h 0 = thru hole board

1 = Surface mount board (rev C)
Reserved (set tpo 0)

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 22 -

5.0 Analog Joystick Report (Happ Flying UGCI)

A high performance analog joystick is available with the Happ Flying UGCI. The
Flying UGCI supports an eleven-button four axis joystick with a Point of View
(POV) hat switch. The switches are completely debounced and the analog axes
are all eight-bit filtered which use a hardware A/D converter for the conversions.
The joystick is on endpoint 1 and has a maximum packet rate of 120 Hz. The
packet rate is determined by the sharing of endpoint 1, but will in most cases
deliver the 120 Hz rate. The packet format is as follows:

Analog Joystick Report (Flying UGCI)

Byte
0

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

RID = 1 X-Axis 8-bits
Signed
127 to –127

Y-Axis 8-
bits
signed
127 to
-127

Rudder 8-
bits
unsigned.
0 to 255
(or
second
joystick)

Throttle
8-bits
unsigned
0 to 255
(or
second
joystick)

POV
E=0
NE=45
N=90
NW=135
W= 180
SW=225
S=270
SE=315
S(Center
=-1)
Degrees.

B9 = Bit0
B10= Bit1
B11=Bit2

1= Down
0=Up

B1= Bit0
B2 = Bit1
B3 = Bit2
B4 = Bit3
B5 = Bit4
B6 = Bit5
B7 = Bit6
B8 = Bit7

5.0.1 Flying UGCI Support for Two Analog Joysticks

The Flying UGCI can support up to two analog joystick. This is accomplished by
sharing the analog joystick report and utilizing the rudder and throttle inputs of
the same report as the X and Y of the second joystick. The second joystick would
then lack the POV hat switch. The eleven buttons could then be split so that 6
buttons are placed on the first joystick and 5 on the second joystick. This in
conjunction with the Flying UGCI’s two coin-op inputs and 2 start buttons,
provides a complete solution for location based multi-player arcade and
redemption games.

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 23 -

5.0.2 Flying UGI Rudder and Throttle

Under certain circumstances, the rudder and throttle must be disabled in order to
prevent spurious reports from being sent to the game. In this case, the rudder
and throttle must be tied to VCC on the connector.

5.0.3 Electrical Limitations of Analog Inputs

The analog inputs provide a robust and filtered input interface to the game. The
input impedance is limited to less than 10K.

5.1 Output Report for Driving UGCI

A high IO or “Driving” UGCI supports up to two players in driving configurations.
The Driving Game Frame natively supports the Happ Steering wheel, brake and
throttle pedals as well as a forward reverse analog shifter. The Driving UGCI
supports more button inputs than the flying for high IO applications. In addition, a
fifth logical axis provides support for an analog clutch for multi-featured games.

The driving UGCI supports five independent analog axis and 15-digital inputs to
support High IO applications. The analog portions are all 8-bits running at a
maximum rate of 120 Hz for the packet. In addition, a switch contact closure can
be used in lieu of a analog input and read by the game to extend the possible
digital portion of up to 21 bits for the packet. With the two coin drops, start
buttons, multi-player high IO applications are now feasible at a reasonable cost.

Driving UGCI Joystick Report (Driving UGCI)

Byte
0

Byte 1 Byte
2

Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

RID = 1 (X-Axis
Usage)
Wheel
8-bits
Signed
+127 to
–127

(Y-Axis
Usage)
8-bits
signed
127 to
-127

(Throttle) 8-
bits
unsigned
0 to 255
(or second
Wheel)

(Rudder)
8-bits
unsigned
0 to 255
(or second
Throttle/
Brake)

(Brake
Usage)
8-bits
unsigned
0 to 255
(Forward
Backward)

B9= Bit0
B10 = Bit1
B11 = Bit2
B12 = Bit3
B13 = Bit4
B14 = Bit5
B15 = Bit6

B1= Bit0
B2 = Bit1
B3 = Bit2
B4 = Bit3
B5 = Bit4
B6 = Bit5
B7 = Bit6
B8 = Bit7

*The brake axis will not show up in the WINDOWS control panel. The Driving
UGCI shows up as a 4-axis, 16-button Joystick.

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 24 -

5.1.1 Driving UGCI Rudder and Throttle

Under certain circumstances, the rudder, throttle and brake must be disabled in
order to prevent spurious reports from being sent to the game. In this case, the
rudder and throttle must be tied to VCC on the connector.

5.1.2 Electrical Limitations of Analog Inputs

The analog inputs provide a robust and filtered input interface to the game. The
input impedance is limited to less than 10K.

6.0 The Output Driver Board Part #96-0746-00

The Happ UGCI has an optional Driver board available, part #96-0746-00 used
with wire harness 96-0741-00. This board can be used to drive up to 14 open-
collector 500MA (lamp) outputs and two open-collector 5 AMP (with external
heatsinking) outputs with a maximum voltage of 50 VDC (60 VDC for high-
current outputs). Outputs are sink drivers.

The HID output drive utilizes a special report packet. This packet turns
addressable outputs on or of:

Addressable Output Reports

Byte 0 Byte 1 Byte 2
RID = 8 Bit0 = OUT0

Bit1 = OUT1
Bit2 = OUT2
Bit3 = OUT3
Bit4 = OUT4
Bit5 = OUT5
Bit6 = OUT6
*Bit7 = OUT7

Bit0 = OUT8
Bit1 = OUT9
Bit2 = OUT10
Bit3 = OUT11
Bit4 = OUT12
Bit5 = OUT13
Bit6 = OUT14
*Bit7 = OUT15

Writing a one drives the output driver in the active state (Pulled Down).
Writing a zero turns the output off (Open Circuit).
This packet is written under endpoint 0.

*High current < 5 Amps

+5 volt power is supplied to the Driver PCB from the UGCI. You must supply
external power to your external loads. You cannot power your loads with UGCI
power.

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 25 -

7.0 Installation of the Happ UGCI

This is the method for the UGCI in a WINDOWS 98//ME/2000 environment.

7.1 Installation in WINDOWS 98/ME/2000/XP Environment.
The following assumes that the person installing the UGCI is familiar with
installing devices in a computer and is familiar with computers in general. If you
are not, find someone who is.

There are no drivers or other Happ supplied system components to install in
order to achieve basic functionality with the Happ UGCI. You will need the
WINDOWS CD-ROM that came with your computer.

Step 1) Plug the trackball and joystick(s) into your UGCI. Do NOT plug the
controls into the UGCI live or when power is applied or you can damage the
board. Make sure that any metal mounting plates, ground wires, etc, of all of the
input devices are grounded to an earth ground with their own ground wire. This
can be your PC case. Do NOT ground through the USB power ground.

Step2) Re-boot your system and stop all running games.

Step 3) Place your WINDOWS CD in the CD-ROM drive and plug the UGCI in to
the USB cable. You will get an hourglass, and a dialog box that says ”New
Hardware Detected.” If you do not, check you BIOS to make sure that you
computer has the USB hardware enabled – or call your computer vendor.

Step 4) Carefully follow the instructions in the dialog box. The system will query
you to load the system files and drivers necessary to enable the UGCI
functionality. Load every system component that the dialog recommends. This
will assure that your UGCI will be fully functional. Be patient, the system takes a
long time to load the files. If prompted to Restart, you can click “NO” if you wish.

Step 5) The trackball will function at this point. Move the trackball around and
verify that it works. The Joysticks will now show up in the Windows Control
Panel/Gaming Options. Click Properties and Calibrate to calibrate. Consult your
WINDOWS documentation on how to use the control panel. You must calibrate
the Joystick prior to using them in any game.

Step 6) Re-boot you computer and verify that step 5 is still valid.

You have now installed your UGCI in the WINDOWS system and are ready to
use the device.

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 26 -

8.0 HAPP UGCI SDK Release 1.32

The SDK provides a way for the user to access the special functions of the UGCI. The
SDK is available for download at WWW.Happcontrols.com on the UGCI page in our
Amusement section.

This release of the SDK contains no source code. A version of the SDK containing source
code can be provided to Game Developers or other UGCI users demonstrating a
legitimate need for the source code. The source code provided can help show how the
UGCI communicates with the PC and is intended for those writing WIN98/2000/XP
applications using the UGCI. You will need to be a member of MSDN for the code to be
of any use to you. Email Technical@Happcontrols.com if you wish to obtain the
source code. Visit our web site for the latest documentation for the UGCI as well as all
our products at WWW.Happcontrols.com. Visit our development partner at
WWW.R0R3.com.

KNOWN ISSUES with SDK release 1.3 and 1.31:

1. The cursor (arrow) keys can not be mapped.
2. On some versions of Direct X, when using the Fighting UGCI, Joystick 1 and

2 can be reversed. It is recommended that you make sure that Joystick 1
reads as Joystick 1 in your game or application before completing your
design. It may read as Joystick 2.

3. Release 1.32 adds support for Windows 2000 and Windows XP. Note that the HAPP
TEST program is unable to access the trackball on Windows 2000/XP. This device is
treated as a protected system device on these platforms. In this case, the trackball
selection button remains disabled. The trackball does work, of course

The UGCI SDK will work with WIN98/ME/2000/XP. It will not work on a MAC OS.

Note: Using the Coin/Bill counters, Watchdog and Player Start buttons require
application software to be written for the UGCI. These are not mappable to a
keyboard key. You need to be a member of MSDN (Microsoft Developers
Network) and use the MSDN DDK to do this.

UGCI SDK: (Cont.)

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 27 -

Basics:
1. Click on HAPP TEST Icon to start.
2. FIND DEVICE button shows what HAPP devices are connected to the PC. You need
to click this first, before the other features will work. Select type and click OK.
3. HW REV: Use this to select if your UGCI is a surface Mount Device board or a Thru-
Hole board. You need to select or Coin 2 and WD won’t work properly.
4. KEY MAP allows you to map any keyboard key A thru Z, numeric, function and
control keys (ALT (L&R), TAB, CTL (L&R), ESC, ENT, SHIFT, SPACE, BKSP,
joystick direction (when using switch-type joysticks and the Fighting UGCI only) or
mouse buttons to a game controller button. Macros (like CTL-ESC or ALT-TAB or CTL-
F) are possible.

Advanced Users and Game Developers: NOTE: Many of these features require an
application specifically written to use the UGCI.
5. WATCHDOG allows the watchdog timer to be set. NOTE: This requires the use of an
application specifically written to take advantage of the UGCI watchdog feature. Set the
time to a minimum time necessary to allow the PC to completely boot, otherwise the
watchdog will reset the PC before it can completely come to life. The watchdog
connector on the UGCI is to be connected to the reset connector in the PC when using the
watchdog feature with an application written for this feature. Do not connect it otherwise,
or you can get stuck in an eternal boot-reset-boot loop. Set to 0 and do not check BOOT
ACTION to disable.
6. SERIAL NUMBER allows the UGCI serial number to be read. It can be written by an
application written to use the UGCI.
7. EXPANSION allows outputs to be manually turned on using the optional Happ UGCI
Driver Board 96-0746-00. Using this in your game requires a UGCI application.
8. COIN DROP monitors the coin drop inputs. NOTE: The SDK will hang up if it does
not see a coin drop after selecting the COIN DROP button. If you do not have a switch
connected to a coin drop input, do not select it. Counting coins and implementing credit
functions require a UGCI application.
9. TRACKBALL gives a real-time data read of the trackball position and switch status.
This device is treated as a protected system device on WIN2K/XP. In this case, the
trackball selection button remains disabled. The trackball does work, of course.
10. JOYSTICK gives a real-time data read of the joystick position and switch status.

UGCI SDK: (Cont.)

11. BOOT DELAY: Keyboard Boot Enable should be checked if you do not want to use
a keyboard and your PC will not boot without one connected after UGCI installation.
Boot Delay Enable should be checked if checking the Keyboard Boot Enable does not
work. Set the time to be long enough that the PC will be completely booted. The joysticks
or other controls will not operate until this time has run out. Only a very few PCs will
need to use this feature. This works by having the UGCI send out a code that will trick
the bios into thinking that a keyboard is connected. If everything works OK, do not check
these boxes.
12. CLEAR clears the data window. Clear TRACKBALL and JOYSTICK often to see
new data.

UGCI V1.2 09/12/02

Happ Controls Inc. 106 Garlisch Drive, Elk Grove, Illinois
www.HappControls.com

- 28 -

13. CLEAN REG clears the registry of all keys and data pertaining to the UGCI. This
should be used when upgrading to new firmware. Reinstallation will then be necessary.

9.0 Analog Joysticks that connect directly to the UGCI:

B-8 style 95-1345-00
Right Hand Style 95-1347-00
Left Hand Style 95-1432-00
Heavy Duty 2-Button 95-1346-00
Trigger Style 95-1431-00

Appendix A
Electrical Harness Drawings

These harnesses are supplied with the various UGCI kits.
The drawings are provided as a reference to help you connect your controls to

the UGCI.

Disclaimer: Although every effort is made to be accurate, Happ Controls cannot
assume any responsibility whatsoever for errors or omissions in this or any other

document or software relating to the UGCI or the UGCI SDK.

UGCI V1.2 09/12/02

- 29 -

The drawings are provided as a reference to help you connect your controls to
the UGCI.

-30-

